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Annotation

Methods for structural analysis of random loading given by correlation
functions or spectral densities making it possible to obtain initial information
about loading cycles which is necessary for assessing survivability and fatigue
longevity of cracked structural elements are considered. A new method to
analyze random loading of complex structure based on substituting the given
process of loading with simple structure equivalent to the given one by the effect
of damage, which gives an opportunity to use in longevity analysis standard
information about mechanical properties of material is developed.

Key words :

Random processes, strength, fatigue, crack resistance, survivability.

1. Introduction.

To assess reliability characteristics of a structure under random loading
one has to obtain the values of probability that the parameters describing
loading and the working state of the structure are within legitimate borders in
the preassigned period of time. Here principally important are stresses, fatigue
damage accumulated, fatigue crack length, stress intensity factors, etc. The
structure abilities in the terms of resistance are determined by extreme allowable
values of these parameters and can by explicitly shown as the result of standard
tests on cyclic loading effects and can be represented as relationships between
mechanical properties and parameters of loading cycle (amplitudes and mean
values).

As an example, on Fig.1 is given the principle characteristic of fatigue
strength of structures - the schematized fatigue surface showing number of cycles

of loading to destruction N starting from the level of amplitudinal Ga and mean

O stresses [1,2].

On Fig.2 is stretched the basic characteristic of cyclic crack resistance of the
structural materials - full schematized cracked structural element survivability
diagram. :

Here 1 is the area where fatigue crack propagation rates are infinitesimal;
2 is the area with moderate rates of fatigue crack propagation (from 10-7 to 10-
3 mm per cycle); 3 is the area with exceedingly high rates of fatigue crack
propagation (more than 10> mm per cycle). Here Kp and K symbolize peak-
to-peak and mean value of SIF in given loading cycles respectively; Kic - static
viscosity of destruction; Ko and Kge1 - cyclic viscosity of destruction in
starting-from-zero and symmetrical cycles; Kith,o and K1 - threshold values of
SIF in the same kinds of cycles respectively when there is no crack growth.

The main problem, however, is that cycles of loading in random processes
of complex structure and corresponding amplitudes and mean values of the
cycles cannot be defined unambiguously. An example of such process is given in
Fig.3a. It is hard for such process to use information analogous to one
represented on Fig.1,2, whereas for the process shown on Fig.3b there is no
such problem. Let us notice that for the former process the ratio of the number
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(3]

of extremums to the number of points where the curve crosses the mean level is
approximately equal to 2 (the higher this ratio rises, the more complex structure
of random process becomes) while for the latter one this ratio is sharply 1. If it
becomes possible to substitute a process of loading complex structure with a
process of simple structure equivalent to the former one by the effect of damage,
there appears an opportunity to use standard information about mechanical
properties of materials shown on Fig.1,2 in longevity analysis for random
loading processes with complex structure. The complication is that, as a rule,
random loading processes are given not by their time histories, but by
probabilistic characteristics - correlation functions or energy spectra with the
help of which it is required to bring out all possible cycles of loading.

For the strength analysis, there must be brought out the structure of
random processes using statistical information at the hand - correlation
functions or energy spectra of the processes. While in terms of statistics there
must be defined : number of points where trajectory of the process crosses the 0

- level (the mean level) number of exceeding over arbitrarily chosen level,
maximums, minimums, supremum, time intervals between zeroes, extremums,
etc. At the same time, an important problem is to define all the cycles that
constitute the overall process of loading.

2. Random process structure analysis and loading description.

Let us consider the Gaussian stationary random process X(t) with known
correlation function :
K (t)={x(t)-x(t+1)), (1)
which characterizes how heavily the structure is loaded. In this case, mutual

correlation function for V-th and l-th derivatives of X(t) can be determined as
follows :

K o (0)=(=D"K (), (v,[=0]2,..), (2)

From (2) at T=0 we obtain correlation moments of mutual distribution
of probability for the process X(t) and its derivatives. therefore let us assume
that density f(x,x®,x@...) of this distribution is known. The problem of the
process analysis consists in determining probabilistic characteristics of the
number of zeroes, extremums and random process values at special points of
trajectory where n-th derivative of X(t) equals zero as well as in complete

bringing out of all its cycles.
The functional necessary for defining the number of trajectory special

points at which n-th derivative is equal to zero in time t may be written :
N (")(, ) — J"x (u+|)(,[)| 5()&' (")(T))d’l', (3)
0

where O is Dirac delta function.

From (3) one obtains the following expression to gain the mean number
of these points per unite of time : ‘

(N )= [ )7 (0, ), (4)
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where f(0,x*D) is mutual density of probability distribution for n-th and
(n+1)-th derivatives for X®=0, which for the Gaussian stationary process is
represented by following correlation moment matrix :

] KO KE0(0)
[M]=(1 [Kiz"*” © K (0)},(5)

Taking (5) into account, one can get from (4)
(N ) = Ur[ -KEr2(0)/K20(0)]'7 (6)
From (6) it is possible to acquire the sequence of the numbers

N
k, =<_N_L> Lk, =<£2—> , s kK, =< - > which thoroughly characterizes
N

N() Nl

random process structure complexity. Let us note that ki= ka=... k.=1

n-1

whereas if n—>00 , Ry—1.For a random process with correlation function
w

K(t)=Kocos(mot) one has (N,)=(N )=, ..,=(N,)=— and ki= ko=...
/1

ko=1. If a random process has correlation function written as K(t)=Ko8(7) (i.e.
the process is Gaussian white noise),
then :

2n +1

J@en-12n+3)

Thus it can be inferred that for Gaussian white noise

n

3 .
k, = \/ ~ 135, k, = —= = 109 . Morce complex structure has e.g. a process with
5

the  following  correlation  function K(r)=K,e " for  which
5 :
k, = V3= 173, k, = \E ~ 129 for every Q..

Since the probability that a special point (where n-th) derivative equals
zero) is in square (dX,dt) can be obtained as the product of probabilities that

the point is in the intervals dt and dx simultaneously, one can acquire the
following expression for random process value probability distribution at special
points :

L2l

f.0)= (7,'—> [ 7 (x,0,x )t 4 (7)

where f(x,0,X("*D) - density of mutual distribution of probability for X,x® and
x(+D for XM=(). The density for the Gaussian stationary process is determined
by the matrix correlation moments as follows :

K. (0) K"(0)
Ki"“)(o) K'$2n+2)(0):| b4 (8)

From (7) if n=1, one obtains probability distribution density for extremums, if

n=2 - the same for random process values at inflection points, etc.
For further analysis, let us assume that random process values at

inflection points coincide with mean values of cycles whereas amplitudes Xa and
mean values of cycles Xm determined by two succession extremums are

[M ] - (__ l)2n+l




statistically independent. Thus one can find out the values of the following first
and second moments of distribution [3] :

<xa>=;'{§{<x <0)]2 L)
(x,)=0,(10)

For corresponding probability densities one has the following expressions when
Kx(0)=l .

k' 'x

Jax)=kix exp(— '2 J,(ll)

1 x?
fm(x)_ \/E;z(]——lcl_z)exp(_ Z(I—k,_z)) ’ (12)

Note that equalities (11) and (12) depend on parameter ki only. Let us omit
index 1 for K1 in further investigations.

Let us now find out all cycles in the given random process X(t) and form
them a process with simple structure equivalent to the given one by the effects of
damage. To determine probability density for amplitudes in the process formed
one may use the procedure of gradual exclusion from the given process of cycles
defined by to neighboring extremums which, with amplitudes growing, are step-

by-step transferred into the formed process. On Fig.3,4 is shown gradual
transformation of a complex process with complexity parameter k=2 into a

simple process with k2.

Let us denote No,o to be mean numbers of zeroes per unit of time, Neo -
the mean number of extremums per unit of time, fa(X,ko) - probability density
for amplitudes of cycles in initial process with initial value ko=ne,o/no,o, where
N, o(X), Ne,o(X), k(x), c(x), fa(x,k(x)) are the mean number of zeroes per
unit of time, the mean number of extremums per unit of time, the factor of
trajectory complication , the factor of standardization and the probability
density function for the amplitudes for initial process after exclusion from it of
the cycles with amplitude values up to x accordingly.

For further we shall accept a hypothesis that the intensity of process of
exclusion of extremums k times greater than the intensity of process of
exclusion of zeroes which will be expressed by the correlation:

n,(x) n,(x)

where

k(x) = 28 , (14)

Let us denote the required density of probability distribution for
amplitudes in the forming equivalent new random process of simple structure
for which k=1 by f(x). As number of extremums excluded from initial process



equals to number of extremums included in formed process the following
equality is received (Fig.5):

—dn,(x)=n,(x)-c(x)-f,(x,k(x)dc =n,, -f(x)dx,
where pursuant to (11) ¢(x)-f,(x,k (x ))dx =x -k*(x),
These equality gives the expressions :

x k*(x)-n,(x)

Sx)= , (15)

n,(x)=-x-k*(x)-n,(x), (16)

Thus one comes to four equations (13) - (16) to determine four unknown
functions f(x),k(x),ne(X),no(X).

From (13) and (16) one receives the expressions:

”e,(x)__ 2 v
m— x -k (X),(l7)
n(x) s
) x-k*(x), (18)

Integrating (17) and (18) gives:

z-k(z )dzJ, (19)

&ty

nz (x ) = ne'n : exp(—

n,(x)=n,, ~exp[—jz -kz(z)dzj, (20)

From (19) and (20) excluding the functions Ne(X) and ne(X) the
following equality is obtained:

X

k(x)-exp(—_[: “k(z) :j =k, 'exp(—jz -kz(z)d:j, 21)

0
Taking the derivative (21) one comes to a differential equation for
function k(x) :

dk
(k*(k - 1)

where for X=0 we have k=K.

=—x -dx, (22)

Integrating the equation (22) gives the following algebraic equation to
determine the function k(x): '




l__1_+ln|:k (k- )] x2,(23)
Kk Kk, -0 | 2

o

The required functions no(Xx) and ne(X) are received after substituting
(22) in (19) and (20):

n,, k,(k(x)-1)

n()="ee SRS @
n,(x)= Do BR0 70 (: (i)l_ ) , (25)

o

Combining (25) and (15) one can find the required probability
density function for the amplitudes of loading cycles as follows :

x k() (k(x) - 1)
k -1

o

Sx)=

» (26)

where function k(x) is defined from the solution of the equation (23).

The curves representing the functions f(x) and fa(x) are compared for

ko=ki=3 in the Fig.6 . It is visible from them that in considered case these
functions are essentially different. This distinction will increase at increase of
factor k and it will decrease at it reduction . These curves will coincide for

ki=ko=1.

From (23) substituting function k(x) in (12) instead of ki the
probability density function for mean values of cycles which is corresponds to
the given level of amplitudes is received.

From (12) and (26) denoting the amplitude by Xa and the mean value of

the cycle in the formed process by Xm one obtains the following expression for
the mutual probability density function for these values :

f(x a’xm ) =f(x a )fm (x m ’k (xa )) 4 (27)
If process X(t) represents a process of change of stresses then

expression (27) may be directly. used in calculations on fatigue life [3]. So for
the mean fatigue damage accumulation under one loading cycle the following
expression is received:

Mok dx,,

V—J- f(xa’ m
N(xu’xm)

where N(Xa,Xm) - number of loading cycles up to destruction determined in the

Fig.1.

3. Estimation of crack stability and fail-safe of structures.

Consider an element of a structure with an initial crack having length |

under the action of nominal stresses G(t) representing Gaussian stationary




process complex by a structure. Pursuant to (26) and (27) such process can be
consider as consisting of cycles with known probable characteristics.

Let us accept that the strength of such element is completely determined
by a stresses intensity factor (SIF):

K(t)y=o(tr-1(t) -7 (), (29)

where I(t) - crack length to a time moment t, f(l) - undimension function of the
relative crack length .

It is necessary to take into account the ranges Kr and the mean values
Kw of the cycles in the process K(t) in accordance with features of
representation of the information about fracture toughness of materials (for
example, Fig.2). These parameters of cycles are determined from the formulas :

O k4 KI“(’IX < 0
Kr = Knmx 2 ZO ? Kmux SO k4 (30)
Kmax - K min > K max >0
0 2 Kma\ < 0
Km = ) s (3])
05 ' (K max + K min ) ’ Kmax 2 0

where Kmax, Kmin - maximum and minimum value of SIF for the loading cycles.

A coefficient of asymmetry for the cycles is defined as :

R - Kmin
K

max

We shall result the cycles of the process K(t) with any values K, and K
to equal on speed of crack’s growth equivalent pulsable cycles with R=0.

Corresponding ranges of the cycle will be denoted by Ke, and the process
of increase of the crack lengths shall be expressed by the following kinetics
equation:

0,K,<K,
l=3a-K! ,K,<K,6 <K, (32)
w, K, > Kﬁ,
where the K, - threshold of SIF under which growth of cracks not yet

occurs,Ktc - cyclic fracture toughness, Ol and n - parameters.

To the dependence from the degree of asymmetry of loading cycles
threshold of the SIF is denoted by K1 - for the symmetric loading cycle
and by Kme - for the pulsable loading cycle. Parameters of cyclic fracture
toughness are denoted by Kse,1 and Kre,o similarly.

Cycles with parameters {K:=Krc, 1,Ku=0} , {K:=Kfc,0,Km=0.5Krc,0}
and  {K,=0,Km=Krtc}as well as the cycles with parameters
{Ki=Kt Kn=0,K:=Kth,0, Ku=0.5Kh,} and {K:=0,Kn=Krc} are equivalent.
In the first case there will be cycles with inadmissible high speeds of crack’s
growth and in the second - with the neglectly small speeds of crack’s growth. In




the system of coordinates (Kr,Km) the determined point corresponds to the
each of the mentioned above loading cycles. After connecting these points by
direct lines we shall receive such combinations of sizes Kr and K on these lines
at which speed of crack’s growth will be inadmissible high and such their
combination at which speed of crack’s growth will be neglectly small. Thus the

fail-safe diagram shown in a Fig.2 is received. On this diagram it is possible to
denote three zones: 1-with non-propagating cracks, 2- with cracks speed of
growth of which are described by equation (32), 3 - with inadmissible high
speeds of crack’s growth . Compressing stress in cycles of loading with R=0...-1
has insignificant influence on speed of crack’s growth and it is possible to
accept that Kre,0=Kre1 and Km,o =Kuw,-1. At the same time influence of the high
compressing stress on the speed of crack’s growth is investigated only a little
and consequently for R<-1 the fail-safe diagram has hypothetical character
and is shown on a Fig.2 by a shaped line.

We shall estimate the stock of the crack stability to provoke the growth
and transition in the condition of gradual fatigue crack propagation as well as
the stock of stability to transition in the condition of their uncontrollable
growth causing the complete destruction of structure.

In accordance with the fail-safe diagram (Fig.2) the condition of crack
stability to provoke the growth consists in a volume that the points describing

cycles of loading will be in the area Q1 and condition of stability of structure
elements with cracks to destruction ( condition fracturetoughness ) - that these

points will be in the area Q1+

Let the given loading cycle with parameters Ky and K be represented on
the fail-safe diagram by the point A1 or A2 ( Fig. 4 ). Then in accordance with
the sign of the coefficient of asymmetry of the cycles, the coefficient ns of the
stock of the crack’s stability and coefficient n of the stock of the fracture

toughens of the structure element with the crack can be determined from the
formulas:

n.s':<OBl 3 (33)
2 R<O0
|04,
[0C, R0
n, =1 ! , (34)
oc, ,R<0
OA,

where the points B1,B2,Ct and C are on the upper borders of the areas and
represent appropriate limiting cycles of loading . If the point A1 or Az is in the
area {2 then the expression (34) will express the coefficient of the stock of

fail-safe of the structure element with the crack or, that too most, stock of
stability of process of gradual increase of the crack. '




From geometrical reasons follows that at the given fail-safe diagram in
accordance with (33) and (34) the specified coefficient of the stock expressed
by the following formulas:

( — th.a , R Z 0
2
Sy (K, +¥K, )}
=4 - !
h, = K,, ()
) . , R<0
2
27w, & K )}
| 2
K,
_ 2 ¢.0 3 R Z 0
L, (KK
=JL 3 .
n, =9 K., 60
) . -, R<0
2
2+‘{’ (K’ +lP4Km)
L2+, -
- 2K ., ¥ o=t 2 (l_Kth._l)
e L L N 7 B
] ! 2/\ e l\ tho ’ ’ K”L”
Y, =t e Fa=t ? []_Kﬁ._])
y=iga, = o Y = iga, =2 —
, . 2K ) _ K./‘l . 4 4 K'I".v

In the considered random process K(t) two-dimensional time series
(Kr,Kun) describing the loading cycles are random and varied in accordance with
growth of the crack. Therefore the values Ns and RNe, also will be random varied
in time random valuations. It is possible to calculate probable characteristics of
values ns and Ns (their mean, mean square and etc. ) for the given low of the
probability distribution function for the system of values (Kr,Km) and to receive
valuations for the probabilities of events that the process K(t) during time t will
not leave the border of the areas. These probabilities are parameters of
reliability and are denoted as follows:

H,(t)=P{K(r)eQ,, 0< <t}
Hy(t)=P{K(r)eQ, +Q,, 0<s <1}’
In accordance with (30) the value Kp represents probable blends of three
values: zero, positive maximum and range of process K(t) between two next

extremums Ky=2Ka, where Ka - the amplitude value SIF with probability

density function (26). From here follows that the probability density function
can be expressed in the form:

fo(K,D)=c(a-3(K,)+(1-2-a)-f (K )+a-f(K,)), (38)

(37)
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where C - factor of standardization, f+(.),f(.) - probability density function of

values Kupax under Kmin<O and K. 8(.) - delta function, a=(k-1)/(2k) -
standardization factor. '

In accordance with (31) and in view of that the meanings of process for
the points of trajectory inflection is identified with the mean meaning of

loading cycle following expression for probability density function Kn is
received:

f’"(K"l)za.5(K'")+(1_a).fi(K"l)’ (39)
where fi - probability density function for the process K(t) in the points of
the trajectory inflection.

The expressions (36) and (39) express the mutual probability density
function f(KKwm) for the system of values Kr and Km by any time moment
for the given crack length I(t) by this time moment. The change of this density
in time is coursed by gradual propagation of the crack length of which changes
pursuant to the equation (32) where the effective value of SIF is defined from

the expression (36) as:
2

(K, +¥K,).,R20

¥

K = ! | , (35)
(K, +¥,K, ), R<0

2-¥,

Integrating the equation (32) in view of (40) gives the crack length by a
time moment t at first and the corresponding probability density functions
f(Kr,Km) and f(Ke) then. It is possible to calculate the probability of event that

non-stationary process K(t) for time t will not exceed a dangerous level K., i.e.
the probability that destruction will not take place during time t from the
formula (3):

1

FK. )= 1—%]{1—5(1(,)}(11, (a1)

where te - the mean interval of time between loading, Fx(K) - probability

function for Ke a time moment T.

The probability meaning determined from the formula (41) is the main
parameter of reliability of the structure’s element with propagation crack under
random loading processes complex by a structure.

4. Conclusion.

Given investigation was done due to special contract SPC-95-4011 and is
devoted to calculate methods for fatigue longevity and survivability prediction
cracked constructions under random process of loading development.
Performing of this investigation is caused by growing requirements to calculate
accuracy of new machines, devices and constructions reliability and service life,
which are working under random loading. Used in this work methods are based




on modern mechanics of materials destruction, theory of random processes and
statistic dynamics of mechanical systems. The main attention in this report is
devoted for the development of the random processes theory and statistic
dynamics of machines directed on obtaining supplementary information about
processes of loading structure essential for more accurate calculation of
reliability factors, defined by sudden refusal, accumulates fatigue damages and
crack growth.

The main new scientific results we had obtained with this project are
follows:

1. Theory and investigate methods for obtaining of more over numeric
information about random processes then in classic statistic dynamics [ 1, 2] are
developed. This addition information is in analysis of random process structure
peculiarities which indexes have influence on accuracy of numeric estimation of
reliability and service life. :

2. Discovery of all random stationary process cycles given ( after solving of
corresponding statistic dynamic problem ) by correlation function or spectral
density is proposed.

3. Algorithm is developed and due to it we obtained estimations of all
preceding process loading cycles influence on crack growth speed. This allows us
to predict more accurately remaining ( after crack appeared ) construction
service life.

4. Discovery of all cycles in random process of loading with complex structure
allow us to use during calculation of fatigue life, survivability of construction
elements with cracks traditional standardized by international standards
information about fatigue resistance and crack growth characteristics.

5. The existent now service life predict methods are limited by stationary
random processes in linear stationary mechanical systems. After we carried out
given research we can offer the continuation of our cooperation in the next
trends:

a) Development of international standards of constructions reliability and
service life estimation under random processes of loading with complex
structure;

b) Development of structural analysis methods of not Gaussian and non-
stationary random processes in nonlinear dynamic systems;

¢) Development of methods to obtain initial data for structural analysis of
random processes with incomplete information about loadings and dynamic
system parameters;

d) development of analyze methods of non-deterministic by structure
dynamic systems;

e) Development of methods of system reliability prediction in chaotic
vibrations.
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Fig. 1 Fatigue surface.

Fig.2 Full survivability diagram.




Fig.3. Transforming of complex
structure a process with gradual
ruling out intermediate cycles
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Fig.6. Probability distribution densities
for amplitudes for Ky=3; I - initial
process; 2 - process being formed.




